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Abstract

In this paper, the authors explain mathematically why the magnitudes of the deformation measures in the XZ-plane and the YZ-plane are many times larger than their XY-plane counterparts. To support our reasoning, a numerical example is given. 
Introduction 
Traditionally, the influences of maximum undetectable blunders were investigated by reliability analysis (Baarda, 1968). However, good reliability does not guarantee reliable positions of network points. Vaníček et al.(1991, 2001) overcame this problem by introducing the theory of robustness analysis. Seemkooei (2001a,b) revealed that robustness and reliability are closely related by mentioning “the robustness parameters were affected by redundancy numbers. The largest robustness parameters were due to the observations with minimum redundancy numbers”. Hsu and Li (2004) found that local components monopolize deformation measures at the perimeter stations of a network where very small redundancy numbers are found. The researchers reported that the largest deformation at any point may be due to an observation not directly tied to the point of interest. Berber et al.(2006) determined the suitable threshold values with which the robustness of networks can be assessed.
In this paper, the robustness theory (Vaníček et al. 1991, 2001) for three dimensional networks is explained in detail. In addition, a mathematical reasoning was made to show that the robustness of 3D networks is vertically inferior.
3D Deformation measures

Blunders in geodetic observations cause displacements at the individual points of a geodetic network, thereby inducing deformation. The robustness of a network is measured by its capability to deform.

Let the three-dimensional (3D) displacements of a point
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then the deformation matrix at point 
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 is defined by the gradient with respect to position, namely (Vaníček et al. 1991)
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From matrix
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, 3 deformation measures are used at point
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 on the X-Y plane (Vaníček et al. 1991):

Mean strain:
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Total shear:
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is the geometric mean of pure shear
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 and simple shear 
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Local differential rotation:
[image: image13.wmf]z
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The differential rotation at any point of interest is described by
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The local rotation at each point is 
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where 
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Similarly, 

On the Y-Z plane：
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and on the X-Z plane：
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Consider the point 
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 and its adjacent points
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. The relationship between the deformation vector and the displacement of the 3D model is then expressed by( Vanicek et al 2001, Hsu and Li 2004):
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where 
[image: image24.wmf][

]

T

s

s

t

t

t

T

L

2

1

=

, 
[image: image25.wmf][

]

T

s

s

u

u

u

U

L

2

1

=

, 
[image: image26.wmf][

]

T

s

s

v

v

v

V

L

2

1

=

.

The 
[image: image27.wmf]i

Q

 matrix is formed by eliminating the first row of the matrix
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Assume the network is composed of 
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 unknown (deformed) points and has 
[image: image32.wmf]n

 observations (
[image: image33.wmf]m

n

3

>

). If the estimator of displacements,
[image: image34.wmf]X

d

, of the whole network of points is caused by arbitrary changes in an observation, 
[image: image35.wmf]L

d

, then a new 
[image: image36.wmf]m

3

9

´

 matrix
[image: image37.wmf]i

S

 at the point 
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 as a component and zeros elsewhere. It is formed by an appropriate expansion of the diagonal matrix in Eq.(9) to cover the whole network. 

The deformation vector is now
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where 
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Let the observation k, having an a priori standard deviation
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, be allocated with redundancy number
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. Then the components of the deformation matrix (Eq.10) at the point
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 due to the maximum undetected blunder in the 
[image: image46.wmf]kth

 observation can be evaluated by replacing
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where 
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 being the marginally undetectable blunder in the observation 
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 being the value of the non-centrality parameter based on the choices of type I and II errors. According to Vaníček et al.( 2001), the amount of deformation caused by all marginally undetectable blunders is best described by considering only the largest measures. A network is said to be robust if the influence of undetected blunders on estimated positions is slight. Conversely, if the influence is significant, the robustness of the network is weak. 
Reasoning
The authors found that the magnitudes of the deformation measures in the XZ-plane and the YZ-plane are many times larger than their XY-plane counterparts. This phenomenon of vertical inferiority in robustness is attributable to the fact that the coordinate-differences in the Z-axis are much smaller than those in the X-axis and the Y-axis. The derivation of the 3D networks as follows was shown to be horizontally superior in robustness.
For simplicity, suppose that the deformation measures are to be computed for the XZ-plane. Let there be (s+1) points, the point of interest 
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where 
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where the summation is taken from 1 to t, i.e. for all adjacent points 
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The unknown vector,
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Now, it can be shown that 
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Applying the Gauss algorithm (See Appendix ) to the normal equation leads to the solutions 
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where
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with 
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Substituting Eq.(17) into Eq.(18-4) yields the two terms on the right-hand side of Eq.(18-2)
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Generally speaking, the magnitudes of displacements, 
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If 
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By equations (18-2), (20), and (21), it follows that
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Similarly, one obtains
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where v denotes the displacement of the z-component. Equations (22) and (23) give rise to the larger magnitudes of the deformation measures for all points in the XZ-plane.

Numerical example
The Taichung Control Point Network in Taiwan (Fig.1) was used in this study. The network consists of 53 control points and 6 RTK base stations（TCBA、TCBB、TCBC、TC11、TC12、TC13）and was set up by the Taichung City Government in 2003. The coordinate system is under Taiwan Datum 1997 ( TWD97). The non-centrality parameter 
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 Table 1 indicates that the magnitudes of the deformation measures in the XZ-plane and the YZ-plane are much larger than their XY-plane counterparts. Taking position No.14 which has smaller deformation measures than other positions as an example, the mean strain 
[image: image103.wmf]xy

J

 is 3.740E-5, 
[image: image104.wmf]yz

J

 is 4.297E-3 and 
[image: image105.wmf]xz

J

 is 4.319E-3. The total shear 
[image: image106.wmf]xy

g

 is 2.977E-5, 
[image: image107.wmf]yz

g

 is 2.159E-3 and
[image: image108.wmf]yz

g

is 2.194E-3. The local rotation
[image: image109.wmf]z

dw

is 1.420E-3, 
[image: image110.wmf]x

dw

is -1.997E-1 and
[image: image111.wmf]y

dw

 is -7.255E-2. It shows that 
[image: image112.wmf]yz

J

 and 
[image: image113.wmf]xz

J

 are nearly 100 times greater than 
[image: image114.wmf]xy

J

; furthermore, 
[image: image115.wmf]yz

g

 and
[image: image116.wmf]yz

g

 are nearly 100 times greater than 
[image: image117.wmf]xy

g

. Finally, 
[image: image118.wmf]x

dw

 and 
[image: image119.wmf]y

dw

 are far greater than
[image: image120.wmf]z

dw

.
  The average deformation measures (disregarding the negative sign) of the whole network are as follows: the mean strain 
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Fig.1 The Taichung Control Point Network
Conclusion

The experiment clearly shows that the robustness of 3D networks is horizontally superior. This phenomenon is attributable to the fact that the coordinate-differences in the Z-axis are much smaller than those in the X-axis and the Y-axis. Therefore, this phenomenon should not be ignored when robustness analysis theory is applied to deformation monitoring of 3D networks.

Notation
The following symbols are used in this paper:
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= design matrix;
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= deformation matrix;
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= weight matrix; 
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= redundancy number;
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= displacement in the 
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 direction;
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= displacement in the 
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 direction;
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= displacement in the 
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 direction;
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= mean strain;
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= total shear;
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= local differential rotation;
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= blunder vector;
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= standard deviation; and
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d

= non-centrality parameter.
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Table 1 Deformation measures at individual points 
	Point No.
	Mean strain
	Total shear
	Local rotation
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	1
	7.252E-5
	4.811E-1
	4.811E-1
	3.956E-5
	2.406E-1
	2.406E-1
	-2.037E-1
	-7.283E-2
	-1.094E-3

	2
	1.122E-4
	2.884E-1
	2.884E-1
	9.668E-5
	1.442E-1
	1.442E-1
	-1.939E-1
	-7.561E-2
	-1.009E-3

	3
	-2.355E-4
	5.976E-2
	5.992E-2
	1.130E-4
	2.997E-2
	2.996E-2
	-1.947E-1
	-7.539E-2
	-1.390E-3

	4
	2.025E-5
	3.082E-2
	3.081E-2
	9.956E-6
	1.542E-2
	1.542E-2
	-1.998E-1
	-7.006E-2
	-1.092E-3

	5
	3.638E-5
	3.878E-2
	3.878E-2
	7.970E-5
	1.939E-2
	1.940E-2
	-2.113E-1
	-7.854E-2
	-1.276E-3

	6
	1.063E-4
	2.486E-1
	2.486E-1
	6.829E-5
	1.244E-1
	1.243E-1
	-2.085E-1
	-7.192E-2
	-1.200E-3

	7
	1.141E-5
	1.446E-1
	1.446E-1
	1.074E-5
	7.231E-2
	7.231E-2
	-1.964E-1
	-7.013E-2
	-1.084E-3

	8
	5.940E-5
	5.007E-2
	5.007E-2
	3.208E-5
	2.506E-2
	2.506E-2
	-1.965E-1
	-6.876E-2
	-1.216E-3

	9
	-7.112E-5
	2.707E-2
	2.705E-2
	3.774E-5
	1.356E-2
	1.353E-2
	-2.011E-1
	-6.938E-2
	-1.086E-3

	10
	4.380E-5
	-1.111E-2
	-1.109E-2
	2.608E-5
	5.573E-3
	5.559E-3
	-2.007E-1
	-6.981E-2
	-1.314E-3

	11
	1.241E-4
	8.965E-3
	8.814E-3
	8.018E-5
	4.491E-3
	4.423E-3
	-2.011E-1
	-6.981E-2
	-1.310E-3

	12
	-2.732E-5
	-4.879E-2
	-4.879E-2
	1.415E-5
	2.440E-2
	2.441E-2
	-2.006E-1
	-6.960E-2
	-1.095E-3

	13
	-3.394E-5
	-4.480E-2
	-4.476E-2
	4.760E-5
	2.243E-2
	2.240E-2
	-2.003E-1
	-7.287E-2
	-1.316E-3

	14
	3.740E-5
	4.297E-3
	4.319E-3
	2.977E-5
	2.159E-3
	2.194E-3
	-1.997E-1
	-7.255E-2
	-1.318E-3

	15
	7.562E-5
	9.587E-3
	9.748E-3
	1.046E-4
	4.877E-3
	4.901E-3
	-2.009E-1
	-7.237E-2
	-1.390E-3
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	50
	4.088E-3
	-8.855E+1
	-8.856E+1
	5.194E-3
	4.429E+1
	4.428E+1
	1.894E+0
	9.272E-1
	8.362E-3

	51
	3.278E-3
	-8.897E+1
	-8.898E+1
	5.752E-3
	4.450E+1
	4.449E+1
	1.907E+0
	8.596E-1
	9.823E-3

	52
	1.048E-4
	8.230E-1
	8.229E-1
	5.443E-5
	4.115E-1
	4.115E-1
	-1.936E-1
	-6.605E-2
	-1.045E-3

	53
	1.725E-3
	-9.753E+1
	-9.754E+1
	5.594E-3
	4.878E+1
	4.877E+1
	2.171E+0
	1.011E+0
	1.088E-2

	Average
	6.531E-4
	8.239E+0
	8.240E+0
	7.083E-4
	4.121E+0
	4.120E+0
	3.361E-1
	8.563E-2
	1.420E-3


Appendix

Gauss algorithm
For simplicity, suppose that the normal equation includes three unknown points(x, y, z).  
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Then, the reduced normal equation is
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(B-1)
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(B-2)
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where
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From Eq.(B-3) 
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(C)

Substitute Eq.(C) into Eq.(B-2),
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(D)

By substituting Eq.(C) and Eq.(D) into Eq.(B-1), 
[image: image188.wmf]x

 can be solved.  
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